Skip to main content

Posts

Showing posts with the label AI engineering

What is the Purpose of an Orchestrator Agent?

  Learn the purpose of an orchestrator agent in intelligent multi-agent systems. Discover how orchestrators coordinate autonomous AI agents, manage workflows, ensure reliability, and drive efficiency in advanced automation. Introduction As organizations move from isolated AI tools to autonomous multi-agent ecosystems , the need for something—or someone—to coordinate these intelligent entities becomes essential.  How Employees Should Think About an AI Agent-Enhanced Workplace . Enter the Orchestrator Agent : the “brain” that organizes, delegates, monitors, and optimizes how other AI agents execute tasks. Without orchestration, agent systems can become chaotic: Redundant work Conflicting decisions Lack of accountability Failure in complex workflows In this article, we break down the core purpose, benefits, design concepts, and real-world examples of orchestrator agents—and why they’re critical for the future of AI-driven workplaces.  What is an Orchestrat...

Training Agentic AI — How to Build Intelligent Agents That Think, Act & Learn

“ Training Agentic AI : Learn how to build, train and deploy autonomous AI agents — from design patterns , data pipelines, reinforcement learning , tool-use , multi-agent systems and real-world best-practices.” Artificial Intelligence has reached a new frontier: not just systems that respond and generate content, but systems that plan, execute, adapt and learn autonomously — what we’ve called in the previous post “Agentic AI”. In this article we’ll go deeper into how to train such systems: from architecture, data, algorithms, tools, deployment, monitoring to ethics, so you (as a technologist, researcher, developer or business leader) can understand how to build or oversee an agentic AI workflow.  Why “Training” Matters for Agentic AI When we talk about “training” in the context of traditional machine learning , we often mean fitting a model to labelled data, tuning hyper-parameters, then deploying. But for agentic AI the training (and the ongoing learning) becomes far more comp...